RAYTHEON ## **Technical Report** PT-1951 # THERMIONIC CATHODE EVALUATION STUDY INTERIM REPORT NO. 4 | GPO PRICE \$ | | |------------------------------------|-----------| | Hard copy (HC) _ Microfiche (MF) _ | - | | ff 653 July 65 | engrii ji | | | N 00-365 | 83 | |----------|-------------------------------|------------| | FORM 602 | (ACCESSION NUMBER) | (THRU) | | ACILITY | (NASA CR'OR TMX OR AD NUMBER) | (CODE) | | FĀ | (NASA CR'OR TMX OR AD NUMBER) | (CATEGORY) | ### MICROWAVE AND POWER TUBE DIVISION MICROWAVE TUBE OPERATION, WALTHAM, MASS. 02154 #### RAYTHEON COMPANY Microwave and Power Tube Division Waltham, Massachusetts #### INTERIM REPORT NO. 4 THERMIONIC CATHODE EVALUATION STUDY NASA Prime Contract No. NAS7-100 Subcontract No. 951810 April 1 - June 30, 1968 This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100 This report was prepared by F. T. Hill. This report has been approved by: G. Freedman, Manager Materials and Techniques Group L.L. Clampitt, Manager of Engineering Microwave Tube Operation PT-1951 5 August 1968 PT-1951 #### NOTICE This report was prepared as an account of Government-sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA: - a. Makes warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately -owned rights; or - b. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report. As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employees or contractor of NASA, or employee of such contractor prepared, disseminates, or provides access to, any information pursuant to his employment with such contractor. Request for copies of this report should be referred to: National Aeronautics and Space Administration Office of Scientific and Technical Information Washington 25, D.C. Attention: AFSS-A #### ABSTRACT During the fifth interim period of thermionic-cathode evaluation, diodes using pore-dispenser cathodes have completed at least 6700 hours of life burning and are operating satisfactorily at cathode temperatures of 950°C to 1100°C and at current densities of 0.2A/cm² to 1.6A/cm². Diodes using standard barium-strontium-oxide cathodes have completed life burning times varying from 3400 to 5500 hours. The diodes are showing cathode emission slump at current densities above 0.15 A/cm 2 and cathode temperatures of 825°C and 850°C under T_3 and T_4 operating conditions. A new cathode evaluation program using three new nickel cathode alloys with oxide cathodes and coated-particle cathodes in the test diode is outlined. #### TABLE OF CONTENTS | Section | | Page | |---------|--|------| | 1.0 | Introduction | 1 | | 2.0 | Life Burning and Testing of Pore-Dispenser Cathode | 1 | | 3.0 | Life Burning and Testing of Oxide-Coated Cathodes | 7 | | 4.0 | Conclusions and Recommendations | 12 | #### LIST OF TABLES | Table No. | Title | Page | |-----------|---|------| | 1 | Life - Test Results Pore - Dispenser Cathodes | 3 | | 2 | Life - Test Results Pore - Dispenser Cathodes | 4 | | 3 | Life - Test Results Pore - Dispenser Cathodes | 5 | | 4 | Life - Test Results Pore - Dispenser Cathodes | 6 | | 5 | Life - Test Results Oxide - Coated Cathodes | 8 | | 6 | Life - Test Results Oxide - Coated Cathodes | 9 | | 7 | Life - Test Results Oxide - Coated Cathodes | 10 | | 8 | Life - Test Results Oxide - Coated Cathodes | 11 | #### 1.0 INTRODUCTION The Material and Techniques Group of Raytheon's Microwave and Power Tube Operation is performing a study of the life capabilities of three different types of thermionic-emitters for the Jet Propulsion Laboratory, California Institute of Technology. The life capabilities of the following electron-tube cathode types are to be evaluated for a period of two years of life testing. - a. Pore-dispenser cathode - b. Coated-particle cathode - c. Standard oxide cathode During this fifth interim period of the contract, the thirty-one diodes using pore-dispenser cathodes and oxide cathodes were continued on life burning. The results are reported in Sections 2.0 and 3.0. No further work was performed on coated-particle cathodes. Also, no diodes were built during this interim period. #### 2.0 LIFE BURNING AND TESTING OF PORE-DISPENSER CATHODE The test diodes with pore-dispenser cathodes under T_1 , T_2 , and T_3 conditions, have completed 6848 hours of life burning as of the end of this fifth interim period of study. The test diodes under T_4 conditions have completed 6729 hours of life burning. The life-test results are shown in Table 1 (T_1), 2 (T_2), 3 (T_3) and 4(T_4). At each interval of life burning, as noted in the tables, the cathode current is recorded for each diode at its pre-determined cathode temperature and constant anode voltage. The current is also read at $\pm 20\%$ of the specified anode voltage of the test diode. The diodes are removed from the life-test racks and are read for dip temperature according to the procedure previously described in the first interim report, Thermionic Cathode Evaluation Study, January 1 - June 30, 1967. The cathode current is also determined for 95% of the operating temperature from the dip-temperature curve trace. Neither the diodes operating under T₁ conditions (950°C cathode temperature and 0.2 and 0.4 A/cm² anode current) nor the diodes operating under T₂ conditions (cathode temperature 925°C and 0.4 A/cm²) have shown any significant changes in operating currents up to this point in life burning (6848 hours). The dip temperature has increased from 26°C to 41°C for the two diodes. The diodes operating under T₂ conditions, (985°C and 0.8 A/cm² anode current) have shown a 20% decrease in anode current at this point in life burning. The diodes operating under T₃ conditions (1035°C cathode temperature and 0.6 and 1.2 A/cm²) have not shown any significant changes in operating characteristics up to this point in life burning (6848 hours). One diode under T_4 conditions (1100°C cathode temperature and 0.8 A/cm² anode current) has shown a slump of 15% in cathode current. In summary, it can be said that the pore-dispenser cathodes have operated satisfactorily up to 6700 hours of life burning from 950°C to 1100°C with the cathode current varying from 0.2 A/cm² to 1.6 A/cm². TABLE 1 Life - Test Results Pore - Dispenser Cathodes | Test | Diode | Hours | Ip (ma) | Volts | Ip ± 20% V | Dip T ^O C | Ip @ 95%T | |--|-----------------|---|--|-------------|--|--|--| | T ₁ -950°C
0.2 A/cm ² | M1
Ef = 9.0V | 0
2688
4796
5453
6192
6848 | 10.0
8.9
9.0
11.1
11.1 | 39 V | 8.4 - 12.0
8.9 - 13.2
9.0 - 13.2
9.0 - 13.3
9.0 - 13.3
8.9 - 13.0 | 880
891
886
870
892
887 | 8.70
8.00
8.69
8.55
8.50
8.75 | | | M4
Ef=9.0V | 0
2688
4796
5453
6192
6848 | 10.0
10.0
10.0
9.9
9.9
9.8 | 26V | 8.3 - 12.5
8.4 - 12.2
8.2 - 11.9
8.2 - 11.9
8.1 - 11.8
8.1 - 11.8 | 888
906
904
910
910
887 | 8.81
8.25
7.98
7.90
8.00
8.41 | | T ₁ - 950°C
0.4A/cm ² | M2
Ef = 9.0V | 0
2688
4796
5453
6192
6848 | 20.0
21.2
21.0
21.0
20.9
20.0 | 49V | 15.1 - 27.3
16.1 - 25.9
16.2 - 25.4
16.1 - 25.2
16.0 - 25.0
15.6 - 23.2 | 916
896
896
870
910
882 | 19.3
17.5
17.8
17.6
17.1 | | | M3 Ef=9.0V | 0
2688
4796
5453
6192
6848 | 20.0
20.7
21.0
21.0
21.0
20.8 | 35V | 16.5 - 27.0
16.2 - 25.2
16.5 - 25.8
16.4 - 25.2
16.4 - 25.2
16.2 - 24.1 | 897
907
872
877
904
901 | 15.0
16.6
18.5
17.6
17.1
16.3 | TABLE 2 Life - Test Results Pore - Dispenser Cathodes | Test | Diode | Hours | Ip (ma) | Volts | Ip ± 20% V | Dip T ^O C | Ip @ 95%T | |------------------------|-----------|------------------------------|------------------------------|-------------|--|--------------------------|------------------------------| | T ₂ - 985°C | M7 | 0
2688 | 20.0
20.0 | 34.5V | 16.8 - 27.5
15.8 - 24.4 | 899
957 | 19.3
16.6 | | 0.4 A/cm ² | Ef = 9.0V | 4796
5453
6192
6848 | 23.3
23.5
23.5
22.2 | | 18.5 - 29.6
18.7 - 29.9
18.8 - 30.0
17.9 - 28.0 | 954
947
954
940 | 16.8
18.6
16.9
17.5 | | | М9 | 0
2688 | 20.0
22.5 | 40V | 14.6 - 28.5
15.9 - 29.1 | 910
938 | 18.8
17.7 | | | Ef=9.0V | 4796
5453
6192
6848 | 22.4
22.5
22.4
22.0 | 4 | 16.0 - 29.2
15.9 - 29.1
16.0 - 29.2
15.8 - 28.4 | 938
938
938
936 | 17.8
17.7
17.8
17.9 | | T ₂ - 985°C | M11 | 0
2688 | 40.0
27.5 | 65V | 32.0 - 49.5
30.8 - 45.8 | 964
979 | 28.0
30.3 | | 0.8 A/cm ² | Ef = 9.0V | 4796
5453
6192
6848 | 37.0
36.7
36.0
35.0 | | 30.2 - 43.6
30.0 - 43.5
29.5 - 42.4
29.0 - 39.1 | 985
974
976
975 | 31.3
30.8
33.8
27.5 | | | M12 | 0
2688 | 40.0
37.0 | 5 4V | 31.0 - 50.0
29.2 - 45.0 | 913
957 | 38.0
32.0 | | | Ef=9.0V | 4796
5453
6192
6848 | 35.0
34.0
35.0
33.5 | | 27.9 - 42.4
27.0 - 40.8
27.9 - 41.8
26.9 - 40.0 | 985
962
943
971 | 31.8
30.8
34.5
29.3 | TABLE 3 LIFE - TEST RESULTS PORE-DISPENSER CATHODES | Test | Diode | Hours | Ip (ma) | Volts | Ip ± 20% V | Dip T ^O C | Ip @ 95%T | |-------------------------|----------|------------------------------|------------------------------|-------------|--|------------------------------|------------------------------| | T ₃ -1035°C | M13 | 0
2688 | 30.0
30.0 | 45V | 22.5 - 38.5
23.9 - 39.8 | 965
961 | 29.2
26.4 | | 0.6 A/cm ² | Ef=11.0V | 4796
5453
6192
6848 | 31.0
31.5
31.4
31.7 | - | 24.3 - 40.5
23.9 - 40.0
23.8 - 39.6
23.9 - 39.8 | 967
957
970
980 | 27.4
28.2
28.0
26.5 | | | M18 | 0
2688 | 30.0
30.0 | 48.5 | 21.5 - 38.0
23.0 - 37.8 | 949
1003 | 29.2
25.6 | | | Ef=11.0V | 4796
5453
6192
6848 | 31.7
31.0
30.9
31.2 | | 24.5 - 40.0
23.5 - 38.0
24.8 - 40.0
24.3 - 39.2 | 1005
999
999
1005 | 24.2
25.2
24.0
25.5 | | T ₃ - 1035°C | M17 | 0
2688 | 60.0
61.2 | 90 V | 45.0 - 78.5
47.8 - 77.4 | 993
1020 | 55.5
51.6 | | 1.2 A/cm ² | Ef=11.0V | 4796
5453
6192
6848 | 62.9
63.3
63.2
63.0 | | 49.2 - 76.8
49.6 - 76.8
49.7 - 77.4
49.4 - 76.8 | 1017
1027
1027
1023 | 52.0
52.0
51.6
52.0 | | | M14 | 0
2688 | 60.0
54.9 | 98V | 44.5 - 69.0
41.2 - 70.2 | 995
977 | 56.0
55.2 | | | Ef=11.0V | 4796
5453
6192
6848 | 61.7
56.9
56.0
55.2 | | 46.4 - 78.0
42.9 - 71.2
42.0 - 67.0
41.8 - 70.3 | 974
993
980
988 | 55.4
54.4
55.2
55.0 | TABLE 4 LIFE - TEST RESULTS PORE - DISPENSER CATHODES | Test | Diode | Hours | Ip (ma) | Volts | Ip ± 20% V | Dip T ^O C | Ip @ 95%T | |--|-----------------|--|--|---------------|---|--------------------------------------|--------------------------------------| | T ₄ -1100°C | M21 | 0
2521 | 40.0
46.4 | 57 V | 23.0 - 52.0
28.8 - 59.5 | 957
1055 | 37.6
34.6 | | 0.8A/cm ² | Ef=11.0V | 4729
5386
6079
6729 | 48.0
48.4
49.2
50.0 | | 29.4 - 60.8
30.0 - 61.5
34.7 - 63.0
30.9 - 63.0 | 1032
1032
1029
1049 | 36.0
33.0
32.5
33.0 | | | M23 | 0
2521 | 40.0
37.2 | 73K | 24.0 - 51.0
23.9 - 45.8 | 997
1079 | 38.0
31.0 | | | Ef=11.0V | 4729
5386
6079
6729 | 34.8
38.9
36.8
34.0 | ٧, | 22.9 - 42.3
25.9 - 44.4
25.0 - 43.4
23.9 - 40.8 | 1089
1089
1091
1100 | 34.9
27.0
28.1
31.0 | | T ₄ -1100°C
1.6A/cm ² | M19
Ef=11.0V | 0
576
1297
2009
2521
2713 | 80.0
80.2
80.0
79.2
84.5
HEATER | 110V
BURNO | 61.0 - 94.0
61.3 -100.0
62.4 - 98.0
62.8 - 98.5
67.0 -104.0 | 1049
1039
1053
1066
1075 | 77.0
75.0
65.0
65.0
61.0 | | | M22 | 0
2521 | 80.0
86.5 | 106V | 59.0 -100.0
71.7 -110.0 | 1039
1051 | 73.0
66.0 | | | Ef=11.0V | 4729
5386
6079
6729 | 88.3
87.9
88.1
88.0 | | 74.4 -110.0
74.4 -110.0
74.9 -110.0
74.9 -110.0 | 1100
1100
1100
1100 | 65.0
61.5
68.1
65.0 | #### 3.0 LIFE BURNING AND TESTING OF OXIDE-COATED CATHODES The test diodes with oxide-coated cathodes under T₁ and T₂ conditions have completed 3390 hours of life burning at the end of this fifth interim period. The test diodes under T_3 and T_4 conditions have completed 5520 hours of life burning. The life test results are summarized in Tables 5 (T_1), 6 (T_2), 7 (T_3), and 8 (T_4). The diodes with oxide cathodes under T_1 conditions (cathode temperature 800°C, anode current 0.075 and 0.15 A/cm²) and under T_2 conditions (825°C cathode temperature and 0.15 and 0.30 A/cm²) have not shown any significant changes in anode current up to 3390 hours. The dip temperature for the diodes under T_2 conditions have shown a rise to 825°C (operating temperature). Three of the diodes under T_3 conditions have shown a slump of 30% to 50% in anode current at this point in life burning. The dip temperature is also at 825°C (operating temperature). Three diodes under T_4 conditions have shown a slump of 26% to 46% in anode current up to 3520 hours of life burning. The dip temperature is up to 850°C (operating temperature). In general; all cathodes operating above 0.15 A/cm² are showing varying conditions of slumping cathode emission, though no diodes have shown complete emission failure. TABLE 5 LIFE - TEST RESULTS OXIDE - COATED CATHODES | Test | Diode | Hours | Ip (ma) | Volts | Ip ± 20% V | Dip T ^O C | Ip @ 95%T | |--|-----------------|--|--------------------------------------|--------------|--|--|--| | T ₁ -800°C | O-32 | 0
694 | 6.0
5.8 | 19.5V | 4.7 - 7.9
4.5 - 7.0 | 722
659 | 4.13
5.60 | | 0.075A/cm ² | Ef=8.0V | 1371
2009
2748
3390 | 6.0
6.0
5.8
5.6 | | 4.9 - 7.4
4.8 - 7.0
4.8 - 6.9
4.6 - 6.7 | 666
718
711
718 | 5.14
5.03
5.00
5.03 | | | O-35 | 0
694 | 8.0
7.4 | 18.5V | 7.1 - 9.7
7.2 - 8.5 | 750
748 | 4.13
5.55 | | | Ef=8.0V | 1371
2009
2748
3390 | 7.8
7.8
7.9
7.9 | | 7.2 - 8.9
7.1 - 8.9
7.5 - 9.0
7.5 - 9.0 | 740
771
776
776 | 5.14
4.88
4.95
4.88 | | T ₁ -800°C
0.15A/cm ² | O-39
Ef=8.0V | 0
694
1371
2009
2748
3390 | 12.0
11.1
11.8
11.8
11.9 | 36.0V
8.9 | 9.0 - 15.1
8.3 - 13.8
8.9 - 14.3
8.9 - 14.1
8.9 - 14.2
8.9 - 14.2 | 655
651
680
722
695
683 | 10.9
10.9
10.5
10.4
10.5 | | | O-40
Ef=8.0V | 0
694
1371
2009
2748
3390 | 12.0
11.6
12.0
11.6
11.0 | 29.0V | 9.6 - 14.7
9.3 - 13.7
9.9 - 14.1
9.5 - 13.7
9.0 - 13.5
9.0 - 12.9 | 769
660
703
741
732
728 | 9.3
10.4
10.1
9.9
10.0
10.1 | TABLE 6 LIFE - TEST RESULTS OXIDE - COATED CATHODES | Test | Diode | Hours | Ip (ma) | Volts | Ip ± 20% V | Dip T ^o C | Ip @ 95%T | |-----------------------|---------|------------------------------|------------------------------|-------|--|--------------------------|------------------------------| | T ₂ -825°C | O-38 | 0
694 | 12.0
10.0 | 29V | 9.3 - 15.2
8.0 - 12.1 | 741
785 | 11.0
10.9 | | 0.15A/cm ² | Ef=8.0V | 1371
2009
2784
3390 | 11.0
10.5
10.3
10.1 | | 8.9 - 13.0
8.3 - 12.0
8.2 - 12.4
8.2 - 12.4 | 804
825
825
825 | 10.2
9.4
9.4
9.1 | | | O-41 | 0
694 | 12.0
11.1 | 34V | 9.1 - 14.7
8.6 - 13.6 | 727
740 | 10.8
10.8 | | | Ef=8.0V | 1371
2009
2784
3390 | 12.0
11.9
11.4
11.0 | | 9.3 - 14.9
8.9 - 14.2
8.8 - 14.0
8.4 - 13.3 | 758
783
796
825 | 10.8
10.7
10.5
9.8 | | T ₂ -825°C | O-33 | 0
694 | 24.0
19.4 | 45.0V | 19.0 - 30.4
15.8 - 23.6 | 787
825 | 21.0
17.3 | | 0.30A/cm ² | Ef=8.0V | 1371
2009
2784
3390 | 20.9
20.9
21.8
21.3 | | 16.2 - 25.4
16.0 - 25.4
16.8 - 26.9
16.4 - 26.3 | 825
825
825
825 | 20.8
19.5
20.9
19.5 | | | 0-37 | 0
694 | 24.0
19.6 | 56.0V | 19.1 - 30.7
15.7 - 22.8 | 735
788 | 22.6
21.7 | | | Ef=8.0V | 1371
2009
2784
3390 | 21.0
20.9
20.5
20.4 | | 17.0 - 24.7
16.8 - 24.6
16.9 - 24.0
16.9 - 24.0 | 825
825
825
825 | 18.0
20.1
20.9
20.3 | TABLE 7 LIFE - TEST RESULTS OXIDE - COATED CATHODES | Test | Diode | Hours | Ip (ma) | Volts | Ip ± 20% V | Dip T ^O C | Ip @ 95%T | |------------------------|-----------------|---|--|--------------|--|--|--| | т ₃ -825°С | O-11 | 0
2038 | 18.0
12.2 | 31V | 14.0 - 22.2
10.0 - 14.2 | 779
825 | 16.4
11.3 | | 0.225A/cm ² | Ef=8.0V | 3439
4077
4870
5520 | 11.0
10.7
10.0
10.0 | · | 9.0 - 12.4
8.7 - 12.0
8.3 - 11.4
8.3 - 11.8 | 825
825
825
825 | 11.6
11.7
12.1
15.7 | | | O-15 | 0
2038 | 18.0
12.2 | 28V | 13.9 - 23.5
12.0 - 18.7 | 769
825 | 16.6
11.3 | | | Ef=8.0V | 3439
4077
4870
5520 | 14.2
14.0
12.3
12.8 | | 11.3 - 18.0
11.2 - 17.7
9.2 - 16.0
11.0 - 17.2 | 825
825
825
825 | 13.5
12.4
13.6
13.2 | | т ₃ -825°С | O-7 | 0
2038 | 36.0
24.9 | 3 4 V | 28.0 - 45.5
21.0 - 28.0 | 783
825 | 33.5
29.0 | | 0.45A/cm ² | Ef=8.0V | 3439
4077
4870
5520 | 20.0
17.7
17.8
17.0 | | 17.0 - 22.4
15.1 - 20.8
14.9 - 20.0
14.3 - 20.0 | 825
825
825
825 | 32.8
24.3
16.9
30.2 | | | O-14
Ef=8.0V | 0
2038
3439
4077
4870
5520 | 36.0
35.0
35.4
35.2
34.0
33.8 | 67V | 28.0 - 44.5
27.0 - 46.9
27.0 - 46.2
27.0 - 48.0
26.4 - 47.9
26.4 - 47.4 | 768
788
825
825
825
825 | 31.7
31.2
29.3
24.3
31.5
30.3 | TABLE 8 LIFE - TEST RESULTS OXIDE - COATED CATHODE | Test | Diode | Hours | Ip (ma) | Volts | Ip ± 20% V | Dip T ^O C | Ip @ 95%T | |------------------------|----------------------|---|--|----------------|--|--|--| | T ₄ - 850°C | O-21 | 0
2038 | 24. 0
16. 0 | 39♥ | 18. 2 - 29. 0
13. 0 - 23. 5 | 774
850 | 21.6
19.8 | | 0.3 A/cm ² | E _f =8.0V | 3439
4077
4870
5520 | 15.0
15.0
15.0
15.8 | | 12. 2 - 19. 8
12. 1 - 18. 6
12. 2 - 18. 1
12. 9 - 18. 4 | 850
850
850
850 | 18.3
18.2
16.5
17.3 | | | O-22 | 0
2038 | 24.0
17.0 | 46V | 19.7 - 28.0
13.9 - 32.8 | 775
850 | 18. 2
15. 0 | | | Ef=8.0V | 3439
4077
4870
5520 | 15.8
14.9
13.2
13.0 | | 13.1 - 21.2
12.4 - 19.0
11.1 - 20.4
11.0 - 15.0 | 850
850
850
850 | 19.3
14.7
15.9
14.3 | | T ₄ - 850°C | O-19 | 0
2038 | 48.0
38.8 | 57 . 5V | 35.0 - 59.3
30.0 - 57.0 | 796
841 | 42.0
37.2 | | 0.6 A/cm ² | Ef=8.0V | 3439
4077
4870
5520 | 41.9
46.7
44.8
42.4 | | 31.4 - 64.5
33.9 - 63.9
32.0 - 62.1
32.2 - 60.8 | 850
850
850
850 | 36. 0
39. 2
37. 2
42. 0 | | , | O-20
Ef=8.0V | 0
2038
3439
4077
4870
5520 | 48.0
44.9
41.4
40.9
38.9
36.7 | 70 V | 36.8 - 60.0
34.0 - 59.4
32.0 - 55.3
31.4 - 53.4
30.4 - 50.9
29.0 - 45.4 | 769
831
850
850
850
850 | 42.6
34.2
37.5
37.8
37.2
39.6 | #### 4.0 CONCLUSIONS AND RECOMMENDATIONS The Raytheon Materials and Techniques Group, in conducting a study of the life capabilities of the pore-dispenser cathode and oxide-coated cathodes, draws the following conclusions from twelve months of life burning under the specified conditions noted in Tables 1 through 8: - a. The pore-dispenser cathode is suitable for dc operation for at least 6700 hours at current ranges of 0.2 A/cm² to 1.6A/cm² and temperatures ranging from 950°C to 1100°C. - The standard barium-strontium-oxide cathodes are showing erratic emission slump at current densities higher than 0.15A/cm² during the life-burning cycle. In reference to the recommendations made in the last interim report concerning the use of more active nickel cathodes other than 0.1% Zr-Ni to improve the performance of the oxide cathode under higher current densities than 0.15A/cm², the following program is being finalized for testing of oxide-coated cathodes. a. Build and test the following diodes (all currents in mA/cm²): | 1. | Oxide cathode
using 220 nickel
alloy | T ₂ | l unit at 150 ma, l unit at 300 ma | |----|--|----------------|------------------------------------| | | | ^T 3 | l unit at 225 ma, l unit at 450 ma | | 2. | Oxide cathode
using A-33
nickel alloy | T ₂ | 1 unit at 150 ma, 1 unit at 300 ma | | | | Т3 | 1 unit at 225 ma, 1 unit at 450 ma | | 3. | Oxide cathode
using Ni Pure/
nickel alloy | T ₂ | l unit at 150 ma, l unit at 300 ma | | | | T ₃ | 1 unit at 225 ma, 1 unit at 450 ma | | 4. | Coated-particle cathode using A-33 nickel alloy | T ₂ | 1 unit at 275 ma, 1 unit at 550 ma | | | | T ₃ | 1 unit at 415 ma, 1 unit at 830 ma | | 5. | Coated-particle
cathode using
Ni Pure nickel alloy | T2 | 1 unit at 275 ma, 1 unit at 550 ma | | | | Т3 | l unit at 415 ma, l unit at 830 ma |